Formant-Controlled HMM-Based Speech Synthesis
نویسندگان
چکیده
This paper proposes a novel framework that enables us to manipulate and control formants in HMM-based speech synthesis. In this framework, the dependency between formants and spectral features is modelled by piecewise linear transforms; formant parameters are effectively mapped by these to the means of Gaussian distributions over the spectral synthesis parameters. The spectral envelope features generated under the influence of formants in this way may then be passed to high-quality vocoders to generate the speech waveform. This provides two major advantages over conventional frameworks. First, we can achieve spectral modification by changing formants only in those parts where we want control, whereas the user must specify all formants manually in conventional formant synthesisers (e.g. Klatt). Second, this can produce high-quality speech. Our results show the proposed method can control vowels in the synthesized speech by manipulating F1 and F2 without any degradation in synthesis quality.
منابع مشابه
Improved modelling of speech dynamics using non-linear formant trajectories for HMM-based speech synthesis
This paper describes the use of non-linear formant trajectories to model speech dynamics. The performance of the non-linear formant dynamics model is evaluated using HMM-based speech synthesis experiments, in which the 12 dimensional parallel formant synthesiser control parameters and their time derivatives are used as the feature vectors in the HMM. Two types of formant synthesiser control par...
متن کاملComparison of formant enhancement methods for HMM-based speech synthesis
Hidden Markov model (HMM) based speech synthesis has a tendency to over-smooth the spectral envelope of speech, which makes the speech sound muffled. One means to compensate for the over-smoothing is to enhance the formants of the spectral model. This paper compares the performance of different formant enhancement methods, and studies the enhancement of the formants prior to HMM training in ord...
متن کاملFormant analysis and synthesis using hidden Markov models
This paper describes a unifying framework for both formant tracking and speech synthesis using Hidden Markov Models (HMM). The feature vector in the HMM is composed by the first three formant frequencies, their bandwidths and their delta with time. Speech is synthesized by generating the most likely sequence of feature vectors from a HMM, trained with a set of sentences from a given speaker. Hi...
متن کاملEstimation of resonant characteristics based on AR-HMM modeling and spectral envelope conversion of vowel sounds
A new method was developed for accurately separating source and articulation filter characteristics of speech. This method is based on the AR-HMM modeling, where the residual waveform is expressed as the output sequence from an HMM. To realize an accurate analysis, a scheme of dividing HMM state was newly introduced. Using the AR-filter parameter values obtained through the analysis, we can con...
متن کاملFormant-based frequency warping for improving speaker adaptation in HMM TTS
Vocal Tract Length Normalization (VLTN), usually implemented as a frequency warping procedure (e.g. bilinear transformation), has been used successfully to adapt the spectral characteristics to a target speaker in speech recognition. In this study we exploit the same concept of frequency warping but concentrate explicitly on mapping the first four formant frequencies of 5 long vowels from sourc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011